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Abstract. The precise specification of software models is a major con-
cern in model-driven design of object-oriented software. In this paper,
we investigate how program graphs, a language-independent model of
object-oriented programs, can be specified precisely, with a focus on
static structure rather than behavior. Graph grammars are a natural
candidate for specifying the structure of a class of graphs. However, nei-
ther star grammars—which are equivalent to the well-known hyperedge
replacement grammars—nor the recently proposed adaptive star gram-
mars allow all relevant properties of program graphs to be specified. So
we extend adaptive star rules by positive and negative application con-
ditions, and show that the resulting conditional adaptive star grammars
are powerful enough to generate program graphs.

1 Introduction

Model-driven design of object-oriented software aims at describing the static
structure, dynamic behavior, and gradual evolution of a system in a comprehen-
sive way. Typically, a software model is a collection of graph-like diagrams that
is often specified by a meta-model. For instance, the static structure of a system
is often defined by class diagrams of the Uml. Since graph grammars are another
candidate for specifying graph-like structures, we investigate how they can be
used to define software models. As a case study, we consider program graphs, a
language-independent model of object-oriented programs that has been devised
for specifying refactoring operations on programs [14]. Several kinds of graph
grammars have been proposed in the literature. Here we need a formalism that
is powerful so that all properties of models can be captured, and simple in order
to be practically useful, in particular for parsing models in order to determine
their consistency. However, neither star grammars (equivalent to the well-known
hyperedge replacement grammars [13, 4]), nor node replacement grammars [12]
are powerful enough for our purpose. Even the recently proposed adaptive star
grammars [6, 5] fail for certain more delicate properties of program graphs. So
we define conditional adaptive star grammars in this paper. In these grammars,
adaptive star rules are extended by positive and negative application condi-
tions. (Informally, application conditions have already been considered in [9, 7].)
Conditional adaptive star grammars capture all relevant properties of program
graphs.

The paper is structured as follows. In Section 2, we recall how object-oriented
programs can abstractly be represented as program graphs. Then we introduce
star grammars in Section 3, show that they can define program trees, a sub-
structure of program graphs, and discuss why they cannot define program graphs
themselves. In Section 4, we therfore recall the adaptive star grammars devised
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in [6, 5]. Close inspection reveals that even this formalism fails to capture prop-
erties of program graphs. So we extend adaptive star grammars further, by rules
with positive and negative application conditions, in Section 5. These conditional
adaptive star grammars, finally, allow program graphs to be defined completely.
We conclude with some remarks on related and future work in Section 6.

2 Graphs Representing Object-Oriented Software

In model-driven software development, software is represented by diagrams, e.g.,
of Uml. Formally, such diagrams can be defined as many-sorted graphs.

Definition 2.1 (Graph). Let Σ = 〈Σ̇, Σ̄〉 be a pair of disjoint finite sets of
sorts.

A many-sorted directed graph over Σ (graph, for short) is a tuple G =
〈Ġ, Ḡ, s, t, σ〉 where Ġ is a finite set of nodes, Ḡ is a finite set of edges, the
functions s, t : Ḡ → Ġ define the source and target nodes of edges, and the pair
σ = 〈σ̇, σ̄〉 of functions σ̇ : Ġ → Σ̇ and σ̄ : Ḡ → Σ̄ associate nodes and edges
with sorts.

Given graphs G and H , a pair m = 〈ṁ, m̄〉 of functions ṁ : Ġ → Ḣ and
m̄ : Ḡ → H̄ is a morphism if it preserves sources, targets and sorts. A morphism
m is surjective or injective if both ṁ and m̄ have the respective property. If the
morphism m : G → H is both injective and surjective, it is an isomorphism, and
G and H are called isomorphic, written G ∼= H .

In figures of graphs, different sorts of edges are represented by arrows drawn
with different widths or dashing, whereas nodes are distinguished by their shape,
which may be a box or a circle, and by a label inscribed to that shape.

Program graphs have been devised as a language-independent representation
of object-oriented code that can be used for studying refactoring operations [14].
They capture concepts that are common to many object-oriented languages, like
single inheritance and method overriding, whereas properties particular to a few
languages—like multiple inheritance—are left out.

Example 2.1 (A Program Graph). Figure 1 depicts a program graph for a simple
object-oriented program from [1], which is shown in Figure 2. The nodes of a
program graph, drawn as circles, represent syntactic entities of a program: classes
(C), variables (V), method signatures (M) and bodies (B), and expressions (E).
Edges establish relations between entities: “ ” is pronounced “contains” , and
“ ” is pronounced “refers to”.

Nodes of sort C are called “class nodes” or just “classes”, and so for the
other sorts of nodes. The variables contained in a method signature are called
its parameters, and we say that a class c′ is a super-class of a class c if either
c′ equals c, of if some class contained in c′ is a super-class of c. In a similar
way, we define a sub-expression of a body or expression. If a body b refers to
a method signature m, we say that b implements m. In expressions, only data
flow is represented: a reference to a method represents a call ; a reference to a
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Fig. 1. A program graph

class Cell is

var cts: Any;

method get() Any is

return cts;

method set(var n: Any) is

cts := n

subclass ReCell of Cell is

var backup: Any;

method restore() is

cts := backup;

override set(var n: Any) is

backup := cts;
super.set(n)

Fig. 2. A simple OO program

variable represents an access that either uses its value, or assigns the value of
an expression to it.

Definition 2.2 (Program Graph). A graph G is a program graph if the fol-
lowing conditions are satisfied:

1. In G, nodes and edges are of the sorts {C, V, M, B, E} and { , }, respectively.
2. Nodes and edges may be incident as shown in Figure 3. In particular,

(a) a body contains at least one expression, and implements exactly one
method signature, and

(b) an expression either calls exactly one method, or it accesses exactly one
variable; in the latter case, it contain at most one expression.

3. The subgraph Ḡ of G induced by -edges is a spanning tree of G; the root
of Ḡ is a class.

4. An expression may call any method contained in any class.
5. An expression contained in a class c may access any variable contained in

any super-class of c.
6. An expression e may access a parameter of a method m if e is a sub-

expression of a body implementing m.

C

V M B

E

Fig. 3. Incidence of nodes and edges in program graphs



174 Berthold Hoffmann

7. A body b contained in some class c may implement any method signature
contained in any super-class of c.

8. Every class may contain at most one body implementing a particular method
signature m.

9. If an expression e calls a method m, the number of m’s parameters must
match the number of expressions contained in e.

The class of program graphs is denoted by P .

The graph in in Figure 3 is called a type graph in [10], and a graph schema in
Progres [17]; Properties 2.2.1–3 could be described by a class diagram in Uml.
Property 2.2.4 defines the visibility of all methods as public, and Property 2.2.5
defines the visibility of all variables as protected, in the terminology of Java.

The graph-theoretic structure of program graphs is as follows.

Definition 2.3. A rooted, connected, acyclic graph is called a collapsed tree.

Fact 2.1. Program graphs are collapsed trees.

Proof Sketch. Acyclicity follows from Property 2.2.2: Cyclic incidences are al-
lowed only for nesting of classes and expressions, but these occur in the underly-
ing the spanning tree so that they do not lead to cycles. Property 2.2.3 implies
connectedness; The root class of the spanning tree is the root of the program
graph as well, because property 2.2.2 forbids references to classes.

3 Star Grammars

Star grammars are a special case of double pushout (DPO) graph transforma-
tion [10], and equivalent to hyperedge replacement grammars [13, 4], a well-
understood context-free kind of graph grammars. They are recalled just as a
basis for the extensions defined in Sections 4 and 5.

Definition 3.1 (Variable). From now on we assume that the node sorts con-
tain variable sorts Σ̇v ⊆ Σ̇ that define the terminal node sorts as Σ̇t = Σ̇ \ Σ̇v.

Consider a star-like graph X , with one center node cX of sort x ∈ Σ̇v, and
with some border nodes (of terminal sorts from Σ̇t) so that the edges connect
cX to every border node; Then X is called a (syntactic) variable named x. A
variable is straight if every border node is incident with exactly one edge.

A graph G is a graph with variables if all nodes named with variables are not
adjacent to each other.1 Let X denote the class of (syntactic) variables, G(X )
the class of graphs with variables, and G be the class of graphs without variables
(with node sorts from Σ̇t).

Definition 3.2 (Star Replacement). A star rule is written L ::= R, where
the left-hand side L ∈ X is a straight variable and the replacement is a graph
R ∈ G(X ) that contains the border nodes of L.

1 Then all nodes labeled with variable names are centers of stars.
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A variable Y in a graph G is a match for a star rule L ::= R if there is a
surjective morphism m : L → Y where m̄ is bijective. Then a star replacement
yields the graph denoted as G[Y/mR], which is constructed by adding the nodes
Ṙ \ L̇ and edges R̄ disjointly to G, and by replacing, for every edge in R̄, every
source or target node v ∈ L̇ by the node ṁ(v), and by removing the edges Ȳ
and center node cY .

Let R be a finite set of star rules. Then we write G ⇒R H if H = G[Y/mR]
for some L ::= R ∈ R, some variable Y in G, and some match Y , and denote
the reflexive-transitive closure of this relation by ⇒∗

R
.

Example 3.1 (Star Replacement). Figure 4 shows a star rule L ::= R for an
assignment expression. The center nodes of variables are drawn as boxes enclos-
ing the variable name. We shall draw a star rule “blowing up” the center node
of L and placing the new nodes and edges of R inside, as can be seen on the
right-hand side of Figure 4. A star rule can be represented as it is drawn, as a
single rule graph wherein a variable is distinguished as the rule’s left-hand side.
This way, graph operations can be applied to star rules as well. Figure 5 shows
a schematic star replacement G0 ⇒ass G1 using the rule.

Definition 3.3 (Star Grammar). Γ = 〈G(X ),X ,R, Z〉 is a star grammar
with a start variable Z ∈ X . The language of Γ is obtained by exhaustive star
replacement with its rules, starting from the start variable:

L(Γ ) = {G ∈ G | Z ⇒∗

R G}

Example 3.2 (Star Grammar for Program Trees). Figure 6 shows the star rules
generating the program trees that underlie program graphs. The rules define a
star grammar PT according to the following convention: The left-hand side of
the first rule indicates the start variable, a variable named Prg with a class as
a border node in this case. The sorts used in the rules define the sorts of the
grammar.

Boxes with dashed lines and/or shades indicate multiple subgraphs: a shade
indicates that the subgraph may have several copies, which are called clones as
each of them is connected to the remaining graph in the same way; a dashed
line indicates that a subgraph may be present, or missing. (In hy, a hierarchy
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Fig. 4. A star rule and its boxed form
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Fig. 5. A star replacement
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Fig. 6. The rules of the star grammar PT generating program trees

may have n > 0 sub-hierarchies; in bdy, a body contains n > 1 expressions.)
Analogously, the dashed and shaded variables in sig, impl, and call indicate mul-
tiple nodes that may have n > 0 clones. Note that multiple nodes and subgraphs
are just abbreviations, which can be replaced by auxiliary variables that are
defined by auxiliary star rules, just as the iteration operators of the extended
Backus-Naur Form for context-free word grammars.

Grey nodes designate nodes in the program tree that have to be identified
with nodes representing their declarations in order to get a program graph ac-
cording to Definition 2.2: These are the method and parameters generated in
impl and call, and the variables accessed in use and ass.

Inspection of the rules in PT reveals the following.

Fact 3.1. L(PT) is a language of trees.

The language of PT is closely related to program graphs.

Definition 3.4. The unraveling Ĝ of a collapsed tree G is a tree so that there is
a surjective morphism r : Ĝ → G. Let P̂ = {Ĝ | G ∈ P} denote the unravelings
of program graphs.

Fact 3.2. P̂ ( L(PT).

Proof Idea. (I): P̂ 6= L(PT). Inspection of the rules shows that the trees gener-
ated with PT satisfy Properties 2.2.1–2.

Also, every graph G in P satisfies Properties 2.2.1–9. Properties 2.2.1–2 are
preserved in the unraveling Ĝ. Properties 2.2.4–8 are irrelevant for Ĝ, as the
methods, variables, and parameters referred are copied by the unraveling oper-
ation. Property 2.2.9 is unchanged under unraveling

(II): P̂ 6= L(PT). Rule call may have clones where the formal parameters p
have n clones, whereas the actual parameters e have m 6= n clones. However, a
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tree generated with such a clone cannot be the unraveling of a program graph,
which satisfies Property 2.2.9. (For other rules, one can find similar examples.)

Star grammars are context-free in the sense defined by Courcelle [3]. This
suggests that their generative power is limited. Indeed, we have the following

Conjecture 3.1. There is no star grammar Γ with L(Γ ) = P.

Consider Figure 5 to see why we have this conjecture. The rule ass allows to
derive trees of assignments. However, for generating a program graph, the rule
should insert a reference to a variable that already exists in graph G0, and is
accessible in the expression. Due to the restricted form of star rules, such a
node had to be on the border of ass. Since assignments may set every accessible
variable, rule ass must have all these variables on its border nodes so that one
of them can be selected in the rule. However, the number of accessible variables
depends on the size of the program, and is unbounded. Thus a finite set of star
rules cannot suffice to define all legal assignments.

4 Adaptive Star Grammars

Proposition 3.1 gives a clue how the limitation of star grammars can be overcome.
We make the left-hand sides of star rules adaptive wrt. the numbers of border
nodes, as proposed in [6, 5]. Formally, this is defined by cloning.

Definition 4.1 (Singular and Multiple Nodes). We assume that the sorts
Σ = 〈Σ̇, Σ̄〉 are given so that the terminal node sorts Σ̇t contain a set Σ̈t of
multiple sorts so that every remaining singular sort s ∈ Σ̇t \ Σ̈t has a unique
multiple sort s̈ ∈ Σ̈t, and vice versa.

From now on, X , G and G(X ) denote classes of graphs with singular sorts
only, whereas Ẍ , G̈ and G̈(Ẍ ) denote classes of adaptive graphs that may contain
multiple sorts as well.

A star rule L ::= R is called adaptive if L ∈ Ẍ and R ∈ G̈(Ẍ ).

Definition 4.2 (Cloning). Let G be a graph in G̈(Ẍ ) with a multiple node v
that is labeled with ℓ̈ ∈ Σ̈, and incident with edges e1, . . . , en (n > 0). Then G v

k

denotes the clone of G in which v is replaced by k > 0 singular nodes v1, . . . , vk

that are labeled with ℓ, where every clone vi is incident with copies ei,1, . . . , ei,n

of the edges e1, . . . , en incident with v.
If r = L ::= R is an adaptive star rule with a multiple node v, its clone r v

k

is obtained by cloning its rule graph.

Example 4.1 (Adaptive Star Cloning, and Label Specialization). The star rule
ass on the left of Figure 7 is adaptive: its variable a is a multiple node, and
shall match a set of n > 0 variables in the host graph that are accessible in the
expression. On the right-hand side, a schematic view of the clone ass a

n
is given,

for n > 0.
The abstract sort F of nodes a and ai is a placeholder for the concrete sub-

sorts V and M. (F stands for for feature.) Before applying the clone ass a
n
, each
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of the labels F is specialized either to V or M. As with multiple nodes and
subgraphs, a star rule with abstract sorts is just an abbreviation for a set of star
rules wherein these abstract sorts are replaced with any combination of concrete
sub-sorts.

Definition 4.3 (Adaptive Star Grammar). Let Γ = 〈G̈(Ẍ ), Ẍ ,R, Z〉 be a
star grammar over adaptive variables and graphs. Then Γ is called adaptive if
Z ∈ X (i.e., has no multiple nodes).

Let R̈ denote the set of all possible clones of a set R of adaptive star rules.
Then Γ generates the language

L̈(Γ ) = {G ∈ G | Z ⇒∗

R̈
G}

The set of star rules R̈ generated from a set of adaptive star rules is infinite
if at least one of the adaptive star rules contains a multiple node or subgraph. It
has been shown in [5] that this gives adaptive star grammars greater generative
power than grammars based on hyperedge [13] or node replacement [12], but
they are still parseable [6].

Example 4.2 (Adaptive Star Grammar for Program Graphs). The adaptive star
rules in Figure 9 define an adaptive star grammar PG that systematically extends
the program tree grammar PT of Figure 6.

With two exceptions, the rules of PG just extend those of PT. In PG, rule meth

defines a method declaration, which combines a signature sig with an (optional)
implementation impl, whereas ovrd defines the overriding of a method in the
subclass of the original method definition.

In Figure 8 we show the general form of variables in PG and of the program
subgraphs they generate. (In derivations, the multiple nodes d, v, and o of X
are cloned.) The sorts of edges indicate the following roles of the border nodes.
Node r is the root of the program subgraph GX derived from X . Clones of d
are the features declared in GX . Clones of v are the features that are visible in
GX . Clones of o are the methods that are overridable in GX . Features may have
multiple roles in X and GX : every feature declared by X is also visible in X , and
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Fig. 7. An adaptive rule and its clones
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overridable methods are visible as well so that some clones d and v, and some
clones of v and o in X may identified. On the left-hand side of rules, the clones
of d, v and o in a variable X are be distinct (they are required to be straight) so
that they must be identified by matching. The graph GX is directed and acyclic.
Some of its visible border nodes may be isolated. The rest is a collapsed tree
with root r.

The rules in Figure 9 extend the rules of Figure 6 by adding border nodes
to variables according to the roles explained above. The rules for Fea declare a
variable or a method (or just override an existing method). The rule cls declares
its member variables and methods. A hierarchy declares all methods of its top
class and of its sub-hierarchies, makes the variables of the top class visible in the
class itself and in the sub-hierarchies, and makes the methods of the top class
overridable in the classes of its sub-hierarchies. The rule start makes all methods
declared by the program hierarchy visible in it. All rules pass visible features
down to the leaves of the program graph. The rules for Exp then select visible
variables for being used or assigned to, and methods for being called; rule ovrd

selects an overridable method signature for overriding it with a body.
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Fig. 9. Rules of the adaptive star grammar PG defining program graphs
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Figure 10 shows parts of a derivation of the program graph shown in Figure 1
with PG. We simplify the drawing of edges as follows: A pair of counter-parallel
edges “ ” is drawn as a single line “ ”, and a pair of parallel edges of the
form “ ” is drawn as a single arrow “ ”.

The class hierarchy is derived in the first row. Exponents of the rules (if
present) indicate how many clones are made of the multiple subgraphs and nodes
on the right-hand side; for border nodes, it is easy to see how many clones have
to be made, and how their labels have to be specialized. Classes Cell and Recell

will introduce three and two features, resp.; the methods are visible in both
classes, but the variables introduced are only visible in the defining class and
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in its subclasses so that the variable backup in ReCell will not be visible in Cell.
The methods defined in Cell are overridable in ReCell.

The features get, backup, and restore of the class Cell are introduced in the
second row, and the features of the class ReCell are derived in the third row: the
variable backup and the method restore are introduced, and the method set of
Cell is overridden. The last row shows a derivation of the body overriding the
method set of class Cell in ReCell.

The derivations in rows one to three can be combined to one big derivation
by embedding. However, the start graph of the last row cannot be embedded into
the final graph of the derivation in the third row. This is because the rule ovrd

does not make the parameter n (drawn in grey) of the signature of set visible in
the overriding body. The parameter is needed to derive the body, and it should
be visible in it. This reveals one of two problems in the grammar, which cannot
be overcome with adaptive star grammars.

Theorem 4.1. A graph G is in L(PG) iff it satisfies Properties 2.2.(1–5,7).

Proof Sketch. “⇒”: Inspection of the rules (as done in Example 4.2 and Figure 8
above) shows that the border nodes of variables do indeed play the roles given
to them. Using these invariants, it can be shown by induction over the structure
of rules that every G ∈ L(PG) satisfies Properties 2.2.(1–5,7).

“⇐”: Let G satisfy Properties 2.2.(1–5,7). We construct a derivation

Z = H0 =⇒
PG

H1 =⇒
PG

· · ·=⇒
PG

Hn

so that there are injective morphism hi : H̄i → G, where H̄i is the terminal
subgraph of Hi with all nodes that are reachable from the root class via edges
of types { , }, for 0 6 i 6 n.

By Fact 2.1, G is a collapsed tree that has a class, say c, as its root, which is
also the root of a spanning tree induced by -edges (Property 2.2.3). The unique
class in Z is then mapped onto c. The number, say s, of direct subclasses of c
determines the instance hyh

s
that must be applied to ĉ so that the clones of the

C-nodes in H1 can be mapped to the subclasses of c in G so that they can be
extended to an injective morphism h1 : H̄1 → G. (The number of clones for the
border nodes in Z and hyh

s
are left open for the moment.) The construction of

further graphs H̄i can be continued in the same way. (See the program graph
in Figure 1 as an example.) When a graph H̄n has been constructed so that
hi is injective and surjective, no variables are left in H . Then all the open
multiple border nodes in graphs H0, . . . , Hn−1 can be determined by considering
the number of their clones as multiplicity variables, the values of which are
determined by the rules used in the derivation. In the rule used in the first
step, for instance, the multiplicity of the multiple M-node in Z is given as the
sum of the multiplicities of all declared multiple M-nodes in hyh

s
, which in turn

equals the multiplicity of the multiple F -node in hyh
s
. The multiplicity for the

overridable M-node in hyh
s

equals 0, and the multiplicity of the multiple C-node in

hyh
s

is determined by the rule that has been applied to Cls. The process of finding
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equations for the multiplicities of nodes yields a unique solution, because the
equations satisfy the invariants on border nodes. The solutions for the multiple
nodes define complete instances for all multiple nodes in the graphs Hi and in
the rules of the derivation. Thus Hn is in L(PG), so that hi is an isomorphism
for Ĥn = Hn, and Hn

∼= G.

The proof constructs a derivation for a given graph. The construction is
unique up to isomorphism so that we get the following:

Corollary 4.1. PG is unambiguous.

The grammar PG falsely derives some graphs that are not program graphs. In a
graph G ∈ L(PG) \P , a class may contain several bodies that override the same
method, method bodies that access a wrong number of parameters, and method
calls with a wrong number of actual parameters. Let us discuss why adaptive
star grammars fail to describe two properties of program graphs.

Property 2.2.6. In rule ovrd, the parameters of the method m being overridden
cannot be made visible in its body. Parameters are only visible in the body of
their first definition, so they are not among the clones of the F -node in that rule.
(See the overriding of the method set in class ReCell discussed in Example 4.2.)

We could pass around all parameters of all methods (not in the role “visible”,
but in their role as “parameters”). Then, we had to select the parameters of m
to be passed on to its body. We thus have to distinguish the parameters of m
from those of other visible methods. However, the number of visible methods
is unbounded, whereas our supply of edge sorts is finite. So this is not possi-
ble. Alternatively, we could generate copies of the formal parameters for every
overridden body. But then we must know how many formal parameters m has.
Again, this information cannot be made available.

Property 2.2.9. In rule call, the number of actual parameters needs not match
the formal parameters of the method being called. As in the previous case, we
would need access to the parameters of the method being called, or need to know
their number in order to assure parameter correspondence.

These considerations lead to the following

Conjecture 4.1. There is no adaptive star grammar Γ with L(Γ ) = P.

5 Conditional Adaptive Star Grammars

To overcome the deficiencies of adaptive star grammars, we extend adaptive
star rules with application conditions. This has been proposed for general (DPO)
graph transformation rules in [11], and has been discussed informally for adaptive
star grammars in [8].

Definition 5.1 (Conditional Adaptive Star Replacement). An applica-
tion condition A for an adaptive star rule L ::= R is one of the following: (i)
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a positive condition C or (ii) a negative condition ¬C where C ∈ G̈, or (iii) a
clone condition ∀x : A′ where x is a multiple node in L, and A′ is an application
condition for L wherein the node x occurs as a singular node that carries the
same label as in L. The graphs in an application condition may contain further
nodes from L, which carry the same label and are singular or multiple in both A
and L. If A1, . . . , An are application conditions for L, r = A1∧· · ·∧An [] L ::= R
is a conditional adaptive star rule. If n = 0, the rule r is written without the
symbol “[]”, like an unconditional rule.

In a clone r̈ = Ä1 ∧ · · · ∧ Än [] L̈ ::= R̈ of a conditional rule r, all multiple
nodes have as many clones in Ä as in L̈. Let m : L̈ → Y be a match of r̈ with
a variable Y in some host graph G. We define recursively over the structure
of application conditions in which cases m satisfies an application condition A,
written m � A:

– m � C if m can be extended to C;
– m � ¬C if m cannot be extended to C;
– m � ∀x : A if m � A(x/x′) for every clone x′ of x, where A(x/x′) is obtained

from A by renaming x to x′.

If m � Äi for 1 6 i 6 n, the star replacement G[Y/mR̈] is a conditional star

replacement, and we write G
c

=⇒r̈ H .

When drawing conditional rules, as in Figure 11, we indicate shared nodes of
application conditions and left-hand sides of conditional rules by attaching the
same letters to them.

Definition 5.2 (Conditional Adaptive Star Grammar). Let C be a finite
set of conditional adaptive star rules. Then Γ = 〈G̈(Ẍ ), Ẍ , C, Z〉 is a conditional
adaptive star grammar over if Z ∈ X .

Let C̈ denote the set of all possible clones of a set C of conditional adaptive
star rules. Then Γ generates the language

L̈(Γ ) = {G ∈ G | Z
c

=⇒
∗

C̈ G}

Example 5.1. [Conditional Adaptive Star Grammar for Program Graphs] Fig-
ure 11 shows the rules of the conditional adaptive star grammar PGc, which
refines the adaptive star grammar PG of Example 4.2 as follows. The variables
in PGc are attached to the border nodes used in PG, and may be attached to
two additional sets of nodes, see Figure 12: Outgoing dashed edges 99K rep-
resent the formal parameters contained in variables named Hy, Cls, and Fea,
and ingoing dashed edges represent the formal parameters known in a variable.
The rules make that all formal parameters contained in the features, classes and
hierarchies of the program are known to every variable.

In rule call, the positive condition on nodes m and p (where p is multiple
as it occurs inside a multiple subgraph) requires that the clones of p are formal
parameters of m, and the negative clone condition on nodes m and o forbids, for
every other clone o′ of o, i.e., for every other parameter known in the program,
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Fig. 11. Rules of the conditional adaptive star grammar PGc defining program graphs

that o′ is a parameter of m. Thus the nhclones of p are all parameters of m. The
remaining condition forbids m to be a declared node of any variable named X ∈
Σv to m. This makes sure that the parameters of m have been generated before
rule call is applied. Since the multiple subgraph contains the formal parameter p
as well as the variable named Exp generating the actual parameters, this makes
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Fig. 12. Variables and derivations in PGc
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sure that call will generate an actual parameter for every formal parameter of m.
Thus Property 2.2.9 is respected.

In rule ovrd, the first three application conditions (which equal that of call)
make sure that the clones of p are all formal parameters of m. These parameters
are not only made known to the overriding body of m, but also made visible to
it so that they may be accessed as variables in use and ass. Thus Property 2.2.6
is respected. The fourth application condition makes sure that no other method
body contained in the current class c does override the same method m; this
guarantees Property 2.2.8.

In Figure 13, we show some steps of a derivation with PGc that could even-
tually derive the program graph in Figure 1. The grey region contains nodes
representing the declarations of get, n, backup, and restore. A pair of counter-
parallel edges “ ” is drawn as a single line “ ”.

Note that rule meth, which generates the definition of set in class Cell makes
the parameter n visible, as a parameter, to the entire program.

When the rule ovrd is applied to the method set, n is made visible as a
variable inside its body. The other part of the applicability condition holds as
well: Class ReCell does not contain another body overriding set, and no variable
has m as a declared border node (but just as a visible border node of Bdy and
an overridable border node of Fea). Note that in class ReCell, the method set

cannot be overridden by another body since this would violate the application
condition of ovrd. Now the derivation in the last row of Figure 10 can be inserted
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Fig. 13. Deriving the program graph of Figure 1 with PGc
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for the body of set in ReCell because n is present. In that derivation, in the step
using rule call, the application condition of PGc guarantees that exactly one
expression will be generated as an actual parameter since method set has one
formal parameter.

Definition 5.3 (Complete Node). Consider a graph G ∈ G(X ) and a condi-
tional adaptive star grammar Γ .

A node v ∈ Ġ is called complete wrt. structural edges if for every derivation

G
c

=⇒
∗

Γ H , v is incident to the same terminal edges in H as it was in G.

Fact 5.1. In graphs derived with PGc, M-nodes are complete wrt. structural
edges if they are not declared nodes of any variables.

Proof Sketch. By inspection of the right-hand sides of the rules for these vari-
ables in PGc, it is clear that structural edges are added only to declared nodes
of these rules’ left-hand sides.

According to this fact, application conditions over structural edges can safely
be checked as soon as the relevant nodes are only visible or overridable border
nodes of variables. This is the case for the conditions concerning the parameters
of methods.

Thus PGc generates the program graph in Figure 1, and will not generate
calls with mismatching parameters, nor with methods that are overridden twice
in a class.

Theorem 5.1. L(PGc) = P.

Proof Sketch. The proof is similar to that of Theorem 4.1.
“⇒”: Inspection of the rules (as done in Example 5.1 and Figure 12 above)

shows that the border nodes of variables do indeed play the roles given to them.
Using these invariants, it can be shown by induction over the structure of rules
that every G ∈ L(PG) satisfies all Properties 2.2.(1–9) of a program graph.

“⇐”: Given a program graph G ∈ P , we can construct a derivation according
to the underlying structure (with edges of type ) first, before we determine the
clones for border nodes according to the equations on the multiplicity variables.
At last, it can be verified that the conditional rules ovrd and call satisfy their
application conditions.

Application conditions do not sacrifice parseability of adaptive star gram-
mars. Because, checking a condition, which consists of a positive and negative
terminal graph, is always decidable. In contrast to simple adaptive star rules, the
matches of conditional adaptive star rules in a graph may have critical overlaps.
The application condition of one rule may contradict the application application
condition of another rule. Consider, e.g., the node ReCell in the rightmost graph
in the top row of Figure 13. The rule ovrd matches every Fea node in reCell.
However, if the match includes the same method (get or set), then the applica-
tion of the rule to one feature would disable the other application, due to the



Conditional Adaptive Star Grammars 187

negative application concerning unique implementation. The critical pair analy-
sis for graph transformation rules (as implemented in the Agg-system) applies
to conditional graph transformation rules; it might be used to analyze conflicts
in conditional adaptive star rules if we can extend it to multiple nodes.

6 Conclusions

In this paper, we have attempted to define the well-known class of program
graphs [14] by graph grammars. This seems to be impossible with star gram-
mars and even adaptive star grammars [6, 5], whereas it can be done with the
conditional adaptive star grammars that have been introduced informally in [9,
8]. A richer class of program graphs, featuring more general visibility rules, con-
textual rules for abstract methods and classes, control flow in method bodies,
and static typing of variables and methods has been specified in [9] by conditional
adaptive star grammars as well.

There are too many kinds of graph grammars to relate conditional adaptive
star grammars to all of them. So we restrict our discussion to approaches that
aim at a similar application. Context-embedding rules [15] extend hyperedge-
replacement grammars by rules that add a single edge to an arbitrary graph
pattern. They are used to define and parse diagram languages and are not pow-
erful enough to define models like program graphs. Graph reduction grammars [2]
have been proposed to define and check the shape of data structures with point-
ers. The form of their rules is not restricted, but reductions with the inverse rules
are required to be terminating and confluent, providing a backtracking-free pars-
ing algorithm. It is an open question whether graph reduction grammars suffice
to define program graphs.

A lot of work has to be done until we get a graph grammar mechanism that is
useful for defining software models. Yet another problem is to convince software
engineers that it is a practical benefit for their daily work!

First of all, graph grammars should be compared with the conventional soft-
ware models, like Uml diagrams. For instance, can such a model be derived from
a grammar? Can at least parts of a model be obtained “automatically”? There is
some indication that a class diagram specifying Properties 2.2.(1–3) of program
graphs can be inferred from the rules of a (conditional) adaptive star grammar.

Even if conditional adaptive star grammars are powerful enough, their rules
tend to be rather complicated, both to write and to read. So a more general
challenge would be to come up with yet another graph grammar formalism that
is easier to use, but enjoys many of the formal properties of (adaptive) star rules.

The proof of conjectures 3.1 and 4.1 poses the theoretical challenge to dis-
prove membership in a class of graph languages. While there are at some con-
cepts for star languages (e.g., the pumping lemma for the equivalent hyperedge
replacement languages [13, 4]), nothing is known for (conditional) adaptive star
languages.
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